

ies200

Beschreibung

Der ies200 (integrated embroidered sensor 200 [mm]) kann die auftretenden Verformungen über die gesamte Nutzungsdauer der Rotorblätter messen. Durch die Herstellung in einer prelaminierten Form, dem Messbogen, kann der gestickte Dehnungssensor unter Laborbedingungen auf Glasfasermaterial aufgebracht und mit der Matrix verbunden werden. Dieser ist dadurch für den Einsatz direkt bei der Blattherstellung und als nachträgliches Sensor-Patch robust gekapselt.

Der ies 200 ist aus hochwertigem GL-zertifizierten Glasfaserlaminat hergestellt, um möglichst identische mechanische Eigenschaften wie der zu überwachende Rotorblattwerkstoff zu erhalten.

Eigenschaften Dehnungssensor

Gebrauchsdehnung	+/- 5000 µm/m	
Auflösung	Der Sensor ist als rein analoger Pfad konstruiert, sodass die Auflösung nur durch das verwendete Digitalisierungsmodul bestimmt wird.	Als Strommesseingang 4 bis 20 mA und 16-bit Digitalisierung ergibt sich eine theoretische Auflösung von < 0.4 µm/m.
Bandbreite	Die -3db-Bandbreite beträgt 200 Hz.	Abbruch bei 200 Hz aufgrund der Grenzen der Prüftechnik.
Lastzyklen	10^8 Lastspiele im Bereich der Gebrauchsdehnung erreicht, Nullpunktdrift < 100 µm/m	

Dateiversion: 3.25. www.fibercheck.de 1

Sensorschnittstelle	4 - 20 mA	
	Ausgangssignal	
Übertragungsverhalten	wobei 4.5 mA: - 5000 µm/m und 19.5 mA: 5000 µm/m entsprechen	Kundenspezifische Einstellung möglich

Eigenschaften Temperaturfühler

Messbereich	-100 bis + 100°C	
Temperaturschnittstelle	4 - 20 mA	
	Ausgangssignal	
Übertragungsverhalten	wobei 4 mA: -100°C	Kundenspezifische
	und 20 mA: 100°C	Einstellung möglich
	entsprechen	

Mechanische Eigenschaften

Sensorabmessung	200 mm x 50 mm x	Kundenspezifische
	21 mm	Einstellung möglich
Messlänge	85 mm	Kundenspezifische
		Einstellung möglich
Gewicht	ca. 170 Gramm	je nach Ausführung und
		incl. 1m Pigtail
Trittsicherheit	120 kg statisch	

Normative Eigenschaften

mechanisch		
Sinusförmige	5 bis 500 Hz mit	bestanden
Schwingungen	mindestens 3 mm Spitze	
	von 5 – 10 Hz und	
	mindestens 2g Spitze	
	von 10 – 500 Hz,	
	mindestens 5	
	Frequenzzyklen in jeder	
	Achse, nach dem Test	
	müssen die Geräte	
	entsprechend ihrer	
	Spezifikation arbeiten	

Dateiversion: 3.25. www.fibercheck.de 2

Breitbandrauschen	5 bis 500 Hz mit mindestens 1,9g RMS, Testdauer 90 min, jede der drei senkrecht aufeinander stehenden Achsen, während des Tests müssen die Geräte entsprechend ihrer Spezifikation arbeiten	bestanden
Schock	Spitzen von mindestens 10g über 11 ms, halbe Sinuswelle Mindestens je 3 Schocks in jeder Richtung der drei senkrecht aufeinander stehenden Achsen (insgesamt mindestens 18 Schocks)	bestanden
elektrisch		
ESD EN 61000-4-2:2009 Electromagnetic compatibility (EMC) — Part 4-2: Testing and measurement techniques — Electrostatic discharge immunity test	Kontaktentladung: 4 kV Luftentladung: 8 kV Bewertungskriterium: B	bestanden
Burst EN 61000-4-4:2012 Electromagnetic compatibility (EMC) — Part 4-4: Testing and measurement techniques — Electrical fast transient/burst immunity test	Bewertungskriterium A	bestanden
Surge EN 61000-4-5:2014 + A1:2017 Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test	Bewertungskriterium B	bestanden
Conducted Disturbances EN 61000-4-6:2014	Bewertungskriterium A	bestanden

Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields	
by radio-frequency fields	

Temperaturtests

Kältedauertest,	bestanden
-40°C, 16 h	
Wärmedauertest,	bestanden
60°C, 72 h	
Temperaturwechseltest,	bestanden
-40°C / 60°C, 10 Zyklen	
Übertestung: 70°C	bestanden

Elektrische Eigenschaften

Versorgungsspannung	24 V DC, Restwelligkeit ± 5 %	19,2 V DC 30 V DC
Stromverbrauch	< 4 mA	
Signalausgabe	4 20 mA Stromschnittstelle	
Anschlusskabel	Pigtail, 1 m	Änderungen nach Kundenwunsch möglich
Stecker	M12-Steckverbinder, männlich	Änderungen nach Kundenwunsch möglich
Polzahl	8	für Grundfunktionen: 3 Stück (Strain, Temp, GND)
Kabeltyp	geschirmt	
Querschnitt Signalleitung	AWG 26; 0,14 mm²	Änderungen nach Kundenwunsch möglich
Schutzart	IP67	

Anbringung

Der Sensor kann mittels eines Epoxidharzes im Inneren des Rotorblattes verklebt werden. Dazu wird der Sensor mit Abreißgewebe (Peel-Ply) auf den Kontaktflächen geliefert.

Dateiversion: 3.25. www.fibercheck.de 4